Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Ensemble Learning for Electricity Load Forecasting

The efforts of the European Union (EU) in the energy supply domain aim to introduce intelligent grid management across the whole of the EU. The target intelligent grid is planned to contain 80% of all meters to be smart meters generating data every 15 minutes. Thus, the energy data of EU will grow rapidly in the very near future. Smart meters are successively installed in a phased roll-out, and...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Grey Prediction Model for Forecasting Electricity consumption

Accurate prediction of the future electricity consumption is crucial for production electricity management. Since the storage of electrical energy is very difficult, reliable and accurate prediction of power consumption is important. Different approaches for this purpose were used. In this paper, Grey model (1,1) based on grey system theory has been used for forecasting results. Annual electric...

متن کامل

Gated Ensemble Learning Method for Demand-Side Electricity Load Forecasting

The forecasting of building electricity demand is certain to play a vital role in the future power grid. Given the deployment of intermittent renewable energy sources and the ever increasing consumption of electricity, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. The literature is rich with...

متن کامل

Forecasting Electricity Consumption for Pakistan

Now-a-days, different sectors of the economy are being significantly affected by the electricity variable. In this research, we analyzed the monthly electricity consumption in Pakistan for the period of January 1990 through December 2011, using linear and non linear modeling techniques. They include ARIMA, Seasonal ARIMA (SARIMA) and ARCH/GARCH models. Electricity consumption model reveals a si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2018

ISSN: 1996-1073

DOI: 10.3390/en11040949